O K L A H O M A S T A T E U N I V E R S I T Y SCHOOLOF ELECTRICALAND COMPUTERENGINEERING

ECEN 5713 Linear System
Fall 1998
Final Exam

Name : \qquad

Student ID: \qquad

E-Mail Address: \qquad

Problem 1:

Find the observable canonical form realization (in minimal order) from SISO continuous-time system given below:

$$
5 t^{2} \ddot{y}(t)+(t-1) \dot{y}(t)+e^{-2 t} y(t)=2 \ddot{u}(t)+2 t \dot{u}(t)-t^{2} u(t) .
$$

Notice that gain blocks may be time dependent. Show the state space representation and its simulation diagram.

Problem 2:

Show that two "discrete-time" state-space representations $\{A, B, C, D\}$ and $\{\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}\}$ are zerostate equivalent if and only if $C A^{k} B=\tilde{C} \tilde{A}^{k} \tilde{B}, k=0,1,2, \ldots$, and $D=\tilde{D}$.

Problem 3:

Compute $\exp (A t)$ for

$$
A=\left[\begin{array}{ccc}
1 & 4 & 10 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

Problem 4:

Find an equivalent discrete-time Jordan canonical form dynamical equation of

$$
\begin{aligned}
& x(k+1)=\left[\begin{array}{ccc}
0 & 4 & 3 \\
0 & 20 & 16 \\
0 & -25 & -20
\end{array}\right] x(k)+\left[\begin{array}{c}
-1 \\
3 \\
0
\end{array}\right] u(k) . \\
& y(k)=\left[\begin{array}{lll}
-1 & 3 & 0
\end{array}\right] x(k)+4 u(k)
\end{aligned}
$$

Problem 5:

Consider the equivalent dynamical equations

$$
\begin{aligned}
\dot{x} & =A x+B u \\
y & =C x \\
\dot{\bar{x}} & =\bar{A} \bar{x}+\bar{B} u \\
y & =\bar{C} \bar{x}
\end{aligned}
$$

and
where $\bar{x}=P x$. Their adjoint equations are, respectively,

$$
\begin{align*}
& \dot{z}=-A^{*} z+C^{*} u \\
& y=B^{*} z \tag{1}
\end{align*}
$$

and

$$
\begin{align*}
& \dot{\bar{z}}=-\bar{A}^{*} \bar{z}+\bar{C}^{*} u \\
& y=\bar{B}^{*} \bar{z} \tag{2}
\end{align*}
$$

where A^{*} and \bar{A}^{*} are the complex conjugate transposes of A and \bar{A}, respectively. Show that Equations (1) and (2) are equivalent and they are related by $\bar{z}=\left(P^{-1}\right)^{*} z$.

